+7 495 980 0770

Ваша дочь беременна, или Что торговые сети знают о покупателях

Портал Executive.ru опубликовал материал об идентифиции покупателей в торговых центрах с комментариями Георгия Хандоги, инженера департамента информационной безопасности Oberon. 

Как видеоаналитика позволяет торговым центрам идентифицировать покупателей. 

Торговые сети и торговые центры с помощью видеонаблюдения анализируют поток посетителей по социально-демографическим параметрам: сколько мужчин и сколько женщин посетило магазин, как покупатели перемещались по залу, где они задерживались. Некоторые сети даже научились распознавать эмоции покупателей. С какой целью сети ведут эти наблюдения за нами и не нарушают ли эти наблюдения Конституцию и законы России? На вопросы Executive.ru отвечают эксперты. 

[…]

Невозможно сказать, насколько такие системы точны 

Руководители торговых центров и маркетологи поняли, что, анализируя каждодневные посещения посетителей, они могут оптимизировать бизнес-процессы торговли. Благодаря анализу количества посетителей в разное время суток можно «предугадать» – сколько касс должно быть открыто, чтобы не образовалась очередь из покупателей, но при этом, чтобы кассиры также не сидели без дела. Можно отслеживать так называемые «горячие зоны» прилавков, иными словами, места в магазине, куда покупатель заглядывает чаще. Камеры могут пригодиться не только в контроле посетителей, но и рабочего персонала и даже товара, например, можно своевременно понять, что полки опустошили и нужно везти товар со склада. 

В дальнейшем появились различные слияния систем. Видеоаналитику «скрестили» с маркетингом, чтобы рассылать целевую рекламу человеку, который, например, долгое время провел у прилавка с тортами, но так ничего и не купил. Также оказалось полезным интегрирование с системой контроля и управлением доступа рабочего персонала. Анализ позволяет руководству понять, насколько эффективно работает сотрудник, как часто он отдыхает или находится не на своем рабочем месте. 

Рынок подобных решений только созревает в России, поэтому каждое внедрение в крупную торговую сеть представляет собой целое научное исследование и непрекращающийся процесс доработки.  

Невозможно сказать, насколько такие системы точны. Слишком много факторов, таких как качество камеры, свет в помещении, угол обзора и точная калибровка, влияют на окончательный результат. По опыту могу сказать, что вероятность положительного результата анализа составляет от 85 до 95%. В качестве примера перспективы данного направления приведу пример: в Соединенных Штатах система маркетинговой видеоаналитики проанализировала поведение посетителя с дочкой. Спустя несколько дней пришел разъяренный отец, который был в недоумении, почему его дочери – школьнице старших классов – на почту приходит реклама одежды для грудничков. Позже выяснилось, что, проанализировав походку девочки, система определила беременность, но девочка ничего не сообщала отцу, поэтому и произошел конфуз. Это показательный пример для демонстрации точности подобных систем. 

Говоря о стоимости, стоит учитывать, что помимо камер потребуются серверы, на которых будет происходить процесс видеоаналитики, агрегация этих данных, их дальнейшая корреляция. В некоторых случаях подключается еще и машинное обучение, позволяющее автоматизированно совершенствовать систему. Для выполнения всех этих функций потребуются приличные мощности. Также стоит учитывать стоимость камер, обследование помещений для определения удобных точек размещения, монтаж и дальнейшее сопровождение с модернизацией. 

[…]